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Abstract

A three-level system of intermediate transition frequencies
W2 and Y23, with nonvanishing dipole matrix elements for these
transitions only, is conaidered to be coherently pumped at a
frequency near 1/2(Wi;2 + W23) and radiating at both intermediate
frequencies. A sharply resonant rise in the second- and
third-level population is found for slight detuning of the pump
from 1/72(wWy2 + W23),., Population inversion in either transition
is shown to be possible, depending on the pertinent parameters.
The induced dipole moment as well as the coherence of the

radiation is discussed.

. Xey Words: Laser, Laser-type Devices, Coherent Pumping,

Two-Photon Pumpaing, Three-Level Systems, Quantum Electronics
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: I. INTRODUCTION

; Production of population inversion by means of a

i. “three-level” scheme is one of the standard methods used in
lasers and masers pumped by an electromagnetic field. 1In this

. scheme, the (1,3) transition and either the (1,2) or the (2,3)

] transition couple to the electromagnetic field, while the other

intermediate transition is nonradiative and must be subjected to
a perturbation that producea relaxation. The pump acts on the
® (1.3) transition, and a steady-state population at the
internmediate radiative frequency results for an appropriate range
; of the pertinent parameters, as follows from conventional rate
equations. In order that this scheme be applicable, the states
corresponding to the first and third level must be of opposite
- parity, and the pump frequency must be higher than the laser
frequency. In the present report an entirely different method of
steady-state population inversion in a three-level system will be

described, applicable when the top and bottom states are of the

pump frequency may be either higher or lower than the frequency

o
! sene parity, both intermediate transitions are radiative, and the
E for which inversion is produced.

3

II. FORMULATION OF FPROBLEM AND DERIVATION OF EQUATIONS OF MOTION
We consider an atomic system ("atom') of three energy

) levels, Hiuy, hw?, 4w3 in ascending order, with relatively close

E interrmedi:ate transition frequencies %12, W23, (Wj) 5 twj-wyl)

; and only two nonvanishing dipole matrix elements :12 and ﬁéa.

;‘ corresponding to the two intermediate transitions, respectively.

f

A purp field E = 2EpQ cosut, with lw-(1/2)w131<<w, acts on the
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atom, which, in turn, ias either coupled to two loasy cavity modea
with resonant frequencies W2 and W23, respectively, or to‘tho
free-space field, described by an infinite, denumerable set of
modes. We will refer to the two-mode coupling as Case I, and to
the free-space coupling as Case II, distinguishing between these
cases, where necessary, by the subscripts I and 1I, respectively.
In the absence of these subscripts, the expression is applicable
to either case. For simplicity, we consider the situation in
which the field radiated by one transition has a negligible
interaction with the dipole moment of the other transition; in
Case I, we assume that the wjj mode couples only to the (i, 3)
transition and in Case 11, we assume that different sub-sets of
nodes couple to the dipole moment of each transation.

1n boson second-quantization notation (1), the atomic
Hamiltonian is given by Ha —mwiaf aij, and the dipole moment by
3 = 312n1a$ + ;éaazu; + h.c., where aj and et are the usual
annihilation and creation operators obeying the commutation rules
[aj. a;J = 8§43, all other commutators vanishing. Introducing the
reduced variables Aj, such that aj = Aj) o'i“jt. and using the

rotating wave approximation, we express the pump-atom coupling by

H =¥ [ea + e‘(“1z‘“)‘ +a + i(""23-“)t

pa 12214 23474, ) + h.e.,

where %j) = -(€5-313>/a. The field of any mode can be described
by the photon annihilation and creation operators b and b*. with
(b, b+(t)l 2 1, 1In Case 1, we use the notation bj)k, with the
corresponding reduced variables given by bjikx = Bjk e i1WYkt, 1In

Case 11, we use the notation bk, with

M i i a gt 4 4
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bk = Bre iVkt, where vk is the frequency of the k’th (free-space)
mode. Using, again, the rotating wave approximation (2], we
express the coupling between the atom and the field by

Har = H1A1A3 012 « a2a3B 23) + h.c..

where

ﬂn = Y43 By,(t)

Yi{) being the censtant that describes the coupling between the

{i,)) transition and the (i,3j) cavity mode, and

a -1(v
131188 = I vyq Bg(t) e

KoYyt
YiJk being the constant that describes the coupling between the
(i,3) transition and the k’th free-space mode. Introducing the

notation 8§ (1/2)m13-m 4:¢1/2)(w32 - W23), one obtains, as atomic

equations of motion

|

: -1(8+0)t
Aj = -1i(oyh,e "’@12 Ay) }

| l‘
. 1(8+8) ¢t -1(8-a) (
A, = --1(<:n12 1 + a,qA e + A B 3)
. i(ﬁ*b)t
A3 - - i( 23 2 +A2 23) .

Expression for the field i1in terms of atomic variables are

obtained from previously derived results, These are [3)

Biy1¢0) = vyy B4y (0= 1|Y1j| s dtlAi(tl)A (t,)e , 1<

...................
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where 513 ia the losa conatant of the (i,)) mode (energy will

decay freely as exp (-28{;3t)), and (4)

@1311(‘) : @ﬁ’il(:) - 1k, A:(t)Aj

where ki) is a positive constant proportional to the average

(t), 1<j

value (averaged over the index k) of lYigklz in the neighborhood
of Vi = Wwy3, and@(,o_?) is the unpetturbedﬂig. that is, the

operator obtained by replacing Bix(t) by Bix(0) in the expression
forBiJII(t). (It is assumed that the pump is turned on at t = 0,)
We will consider, presently, only the situation in which the

loss in the cavity-modes is sufficiently large so that the field
follows the atomic polarization adiabatically; in other words,

513 is larger than the rate of change of <d§63>. In this

-1
situation one can write, for t>»>§&;3 ,

© _ +
Byyi BO 1k A0 @)

131 “1kgy1
o .
&3, @131 Yy4 B4y

where

2
kygp = lrgyl™ © -

Since égég)l> = 0 for both Case I and Case 1], the expression
for 8130.) has the same form in both cases. It is therefore
unnecessary to treat them separately, and the subscripts I and Il
will be dropped with the understanding that the discussion,
henceforth refers to both cases.

Our present interest lies in the steady-state atomic level
populaticons and dipole moments. We need, therefore, equations
for the evpectation values of all bilinear products Athj with
respect to an (initially) unexcited radiation field. (It should
be noted that the guantities <A;hi> are the elements Pjj of the

atomic density matrix in the interaction representation.) The
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derivation of such equations from those for the Ai{’as in a

convenient form is outlined briefly in the following.
We first write expressions for all derivatives (d/dt)‘AIAJ)
and order each term so that @fJ appears on the extreme left and
813 appears on the extreme right. For the case of an initially
unexcited radiation field, thoégg term refers to the vacuunm
field, and the kj) term accounts for the radiation reaction.
Substituting for each 613(1:) these two terms, and utilizing the
relationship (Iﬂfg)+ (¢ -BSOJ (t) 1> = 0, we drop all
erxplicit vacuum-field references. The above ordering of the
i3’s also determines the ordering of the four atomic factors in
the kjj terms, which we now rewrite in normal order, using the
eppropriate commutation relationships. Utilizing snother
previously derived result (1), nanmely,
AjAj!1> = O when the state |> describes a single atom, we drop
all four-factor terms (remaining after the normal ordering).

Finally, the substitutions

- 18t
L e- 16t fae

are used to obtain ecuations of motion with constant coefficients

for nine real variables:

MY I D A T S T Y T
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ny - °12°12 7 Zkyghy 0

B, = = 85519 * 83553  Zkyofy * Zkpaty

Dy = - 053553 = Zky3ty o

§15 = = (840)P ) = 20,5 (n)7n,) = ay3Fy57Ky55y

§,5 = = (8-8)Py3 = 20,3(ny=ny) + @y, Fy5 = (ky gtk 3)Sy3 o

813 = = 26P 3 = ay3F)y + 815P23 = K353

Bl, = (848)S), + 8535y5 — kpoPy

B,y = (8-8)S3= 9955)3" (kyp + ky3)Pp3 s

By = 28513 + @351y ~ 915523 ~ Ka3f13 -
These equations exhibit 2kj) and 2043 as the decay rate and Rabi
frequency, respectively, associated with the (i,3j) transition.
When multiplied by the appropriate matrix elements, P12 and P23
describe the components of the dipole-moment expectation values
in phase with the field, while 512 and 523 describe those in
quadrsture with the field (which are responsible for the power
absorption). It should be noted that these expectation values
represent only the coherent part of the dipole moment.' The
incoherent part must be obtained from other than the lowest

rorents. The coherence of the radiation will be discussed later.

I1II. SOLUTION OF EQUATIONS OF MOTION

As mentioned previously, our present interest lies in a
steacy-state solution. Setting the time derivatives equal to
zero, and replacing one of the first three equations, (say, that

for n2) by Inj = 1, we obtain a set of nine inhomogeneous

o tet e L.
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equations for nine unknowns. An exact analytic solution isas
formally possible but complicated, and we resort at first to a
numerical solution. For this purpose all the constants, which
ore inverses of the time, can be normalized by taking 412 to be
unity; all frequencies and decay constants are then given in
terms of the (1,2) Rabi frequency. Figure 1 shows a
three-dimensional graph of n2/ni1 ve. 8§ and A. The resonance
that appears in n2/nj) for large A is striking, and motivates an
approximation that makes analytic solutions of the steady-state
equations much simpler. We consider the case 4)>>»cji)>>ki). If

the time scale is chosen so that ¢;3-1, one can regard A~1 and

kjj as small quantities (of first order) compared to unity, and
examine the solution for small 6. The four equations containing A
can now be approximated by retaining only the lowest order ternms,
that is, by dropping the terms (in these equations only)
containing § and k. The resulting set of steady state equations
yields a solution which can be written most succintly as follows:

lL.et

; - 2
T 2 kjplkyg s 8g = (ay3 - a))/28,
and
2
. __ 8 2 2
R = —5——;5— [k23 + 4(6-60) ]
%12 %23

A S SR I Rl S
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With this notation, we have

[1+r(z+rx)]°l ,

nz =
n, = r(l+R)n2 ,
n3 = rnz »
Sp2 = = 2kypplegp)ny
Sp3 = = 2kpplagy)ny
S13 = 2(8kyy/a 585900,
I T Bygkyy  2(8-80)r . 28(8-8,) )
12 A a. .a 2 °12 2 2
12923 %23
C a (8§-6)

23 0
P -2-—-—(1-r)-2r———-] n ,
23 L a 023 2

A(G-éo)
P.. =4r — O . .
13 81904 2

Figure 2 displays both the numerical solution of the exact
equations and the analytic solution of the approximate equations
for the level-populations as functions of s, It is seen that,
for the parameters used, the approximation is good.
IV. DISCUSSION OF SOLUTIONS
Since the gquantity R reaches a minimum at §a 60, the

analytic solutions for n2 and n3, as well as those for

15121, 15231 and 1513!, &8ll exhibit resonant-type maxima as a
function of pump frequency at (1/2) N13-5o. that is, when the
punp is detuned from exact two-photon resonance by So. The

half-maximum rescnance width about ég for either n2 or n3 is

a za 2 k i
| 23 23 2
2(6-6) = [ 22 (245 ) + k23] :
kmax s 12

10

given by
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L and that for n2/ni ia given by -
a, 2,2 ) 5

12%23 . | 2 y

- —_— 4+ k . .

L2
-

oy"

Both widths are an order of mag nitude smaller than the Rabi

v
o}

frequencies 2aj3). Population inversion is achieved either in the

.
3
-
Ly
-
»

h (2.3) transition for r>l, or in the (1,2) transition for

2 2 2 2
r<fl + €5 k237012 a23)31-1, Wwhile the (2,3) inversion ratio is
frequency independent in the solution of the approximate

equations, the (1,2) inversion ratio is sharply resonant, and is

given at resonance by

-1 2, 2 =2 =2\ -1
b (nZ/nl)max = r (1+A k23 a7 023)

The transition at which inveraion occurs will have either a

higher or a lowver frequency than the pump frequency, the

B

difference being approximately a. It is also intoroiting to

note that P13 goes through zero at resonance,

7
It is clear that the present effect may have interesting

applications, firstly, because population inversion for a given

) pair of levels may not be otherwise achievable, secondly, because
inversion can be schieved at a higher frequency than the pump
frequency, and th:rdly, because a sharp resonance has nmany

p obvious uses in prysics. Discussion of the details of such
spplications is beyond the scope of the present paper.

11
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V. RATE-PROCESSES ANALYSIS

It is desirable to offer a more intuitive type of
explanation of the present resonance effect than that
contained in the mathematics. The firat part of such an
explanation is the observation that (1/2)w13-8p is just the pump
frequency at which a three-level system such as the present, but

without radiation losses (that is, without coupling to the

radiation field), behaves like a two-level system forj >>¢;)(5).

Its population, if intially in the ground state, mainly

oscillates between the first and the third level (a Rabi-type
oscillation) with frequency 2012023/48, while the second-level
population remains small (-°§2,A2) and oscillates with relatively

high frequency(-4)([(6]. We can regard our present radiative system as
responding to the pump like this lossless system, pumped from

level 1 to level 3 by a two-photon processa. The second part of

the explanation is the observation that the present system

behaves like a three-level system with respect to radiation

losses, relaxing at both intermediate frequencies with a

consequent distribution of population to all levels.

TaTe e
f

[ N PR
o v -

Since the above explanation invokes, implicity, rate

o 4
-

oo

processes, it is of interest to see how 1t can be presented in

A

quantitative form using rate equations. (It should be noted that

x

?: the explanation is applicable only to the range of parameter
e

:{ values for which the approximation was made.) A set of rate
?: equations for three levels reads,

=

T 12

,!'.
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n1 = R12(n2-n1) + Ry13(n3-n1) + 2ki12n2,

n2 = R12(n31-n2) + R23(n3-n2) + 2k23n3-2k12n2,

i. 53 = R23(n2-n3) + R13(n1-n3) - 2k23n3,

where Rjj is the pumping rate between levels i and j). In order

to obtain the pumping rate between consecutive levels, we look at

2N P

® the equations of motion for a two-level system. These can be

obtained immediately from the three-level equations of motion by

2
’a

eliminating all references to either the first or the third

level. Dropping all references to the third level, we obtain

L4

ny = 212512 ¢ 2k12n2, nz2 = - ni,
i m - A - -n.) -
S12 ¢ 6§+ J)Py12 2u12(n1 nz) k12512'
P12 = (6 + 8)S12 - ki2P12,

where the deviation of the pump fraquency from resonance is now
. given by §+ 5. Since the rate equations for two levels reduce to
Q. 61 = Ri2(n2-n1) + 2k12n2, n2 = - A1,

we must have

>
\ R12(n2-n1) = 912512,

o
Implicit in the use of rate equations is the assumption that
rates are independent of the state of the system. We éonsider

; the steady state, set S12 = §12 = 0O, @eliminate P12 from the last

¢

2 two equations of motion, and obtain

i 2

: o 2 lmgkaz (Bn )

, a = n,-n ,

3 12712 k2 + (6+A)2 21

< 12

E.

A which yields

{ 2

‘v

b R = 22)2%12

y 12 .2 2

;‘ ky, + (5+8)

; a generally familiar result.

4
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We return, now, to the three-level rate equation and compare

them with the three-level equations of motion, obtaining thus
212512 = R12(n2-n1) + R13(n3-ny).

For the range of parameters that led to the approximate equations

of motion, R12 is a small quantity of the order of kj2/402, that

is, of third order. (It should be recalled that kjj and a-3

are small quantities of first order, and Q43 is of order unity.)

From the steady state equations, we see that a must

12512
be of order kji2, since it equals -2ki2n2, and nj is, of course,
of order unity. R12 is therefore negligible compared to Ri3, and
R13 must be of the same order as S12. A similar argument applies
to R23 relative to Ri3. One can say that the approximations made
in the equations of motion find their counterpart, in the rate
egquations, in the neglect of R12 and R23 compared to R13.
Writing the three-level rate equations in accordance with this
prescription we have

61 x R13(n3-n31) <+ 2kji2n2,

62 = 2k23n3 - 2ki2n2,

63 2 R12(n1-n3) - 2k23n3.
This is jJust the guantitative form of the gualitative explanation

offered earlier. 1f we now set

2 2
20y ,973K93
R - »

13 2 .2 2

these rate equations will yield exactly the same expression for

the steady-state populations as the analytic solution of the full

(approximate) equations of motion. It should be noted that,
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while ratea for rate-equation purposea are uaually taken to be
the transition probabilities derived by perturbation theory, the
above expression for R13, with the detuning, can come only from
consideration of the full set of coherent equations. Lastly, as
a check, we compare the rate of energy absorption from the pump
with the rate of energy loss to the field. The former is given
by

Alwy2 ¢+ Ww23)R13¢(n1-n3)

while the latter is given by

g 24 wyizkizn2 ¢ 2Aw23k23n3 .

: Substitution of the above expression for R13 and the analytic
! solutions for nj in these two rates exhibits their equality.
VI. COHERENCE

It is of interest to examine the coherence properties of the

|®
radiastion enitted by the pumped atom. For simplicity, we use the
notation applicable to Case I, in which the atom radiates into
”0' two lossy cavity modes. The (complex) field operator for the
. (13) mode is proportional to Bij exp(-iwg3t). By factoring out
743 from the expression for 3ijr(t) in Sec. II, we obtain
. 1Yy
- 0) - 3 ,*
Bij(t) 313( ) Iy Ai(t)AJ(t) , 1<3 ,
where, it is recalled, Bjj¢(0)1> = 0, The coherent field is
6 proportionasl to <Bjj(t) dexp(-iwj)t). The expectation value of
+
the total energy in the (i,)j) mode is Mwyi) <BjjBjij)>, while the
+
energy associated with the coherent field is Aw j)<Bji)> <Bj)>.
. From the above operator expression for Bj), we have
. 15

R LI ALIC NEAPAL FESENCTENS I ARSI OS 0050 io S it 15 1 S NG 68 (RN T Pt SRR PO L VS

P oy o [ 3, Al iy




vyl +,+ k
-3
<Bijnij 2~ <AAgAA Ty 9 1<3,
£y

(since AjA310> = O for a single atom), and

+s3)

<B ><B k(k /iij)(P j 13

13713

where (i,)) stands for either (1,2) or (3,4). The ratio of the

coherent field energy to the total energy is, therefore, given by

2
9
1j><B 19> 5Py + 55
n L]
<Bij-Bij> 3

The order of magnitude of this quantity is the same as that of
(k43763372 + (8537872, which is a small quantity of second order
for the parameter range under consideration. We see, therefore,
that most of the radiation is incoherent. The frequency of the
coherent radiation is that of the pump, as is to be expected: the
incoherent radiation, on the other hand, may be expected to lie,

largely, in the frequency regions near the two transition

frequencies. A quantitative discussion of the spectral
distribution of the radiation is beyond the scope of the present
poper.

VII. CONCLUSION AND SUMMARY
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Single-frequency two-photon pumping of a three-level system

that rad:ates naturally only at the two intermediate frequencaies

-y R LI
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has been considered. It has been shown that when the pump 18
- slightly detuned from two-photon resonance and not too close to
16
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one-photon resonance for one of the intermediate frequencies,
population inversion can be obtained either in the upper or in
the lower pair of levels, depending mainly on the ratio of the
two radiative decay constants. This effect furnishes a novel
method of population inversion for laser purposes and a offers
the possibility of obtasining population inversion in a transition

with a frequency higher than the pump frequency.
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system as a function of 655u13-w and Ask(wlz-wn) for
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